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Central Limit Theorem
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Consider a sequence X1,X2, ... of independent and identical random variables with
µX = µ and σ2

X = σ2.

Further, from now on, let Sn =
∑n

i=1 Xi , and Mn = Sn
n (the sample mean).
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P r o p o s i t i o n

The variance of Sn is nσ2.

P r o o f .

Using independence we have var(Sn) =
∑n

i var(Xi) =
∑n

i σ
2 = nσ2
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P r o p o s i t i o n

The variance of the sample mean is σ2

n .

P r o o f .

var(Mn) =
1
n2 var(Sn) =

nσ2

n2 = σ2

n

As a consequence we have that, the greater our sample... the lower the variance of the
sample mean! See, it is trivial to show that E [Mn] = µ, so if the variance goes to zero,
it means that big samples should give very accurate estimates of the mean of the
distribution!.
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I m p o r t a n t I n e q u a l i t i e s

Markov: If X is a nonnegative r.v., then P(X ≥ a) ≤ E [X ]
a for any a > 0.

Chebyshev: If X is a r.v. with mean µ and variance σ2, then
P(|X − µ| ≥ c) ≤ σ2

c2 for any c > 0.
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P r o o f : M a r k o v ’ s

You have 10 minutes.
P r o o f .

E [X ] =

∫ ∞

−∞
xfx(x)dx =

∫ ∞

0
xfx(x)dx

≥
∫ ∞

a>0
xfx(x)dx ≥

∫ ∞

a>0
afx(x)dx

= a
∫ ∞

a>0
fx(x)dx = aP(X ≥ a)

So
P(X ≥ a) ≤ E [X ]

a
for a > 0.
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P r o o f : C h e b y s h e v ’ s

More 5 minutes?

P r o o f .

Let Y = (X − E [X ])2, then Y is a nonnegative r.v. Apply Markov’s inequality:

P(Y ≥ c2) ≤ E [Y ]

c2

But E [Y ] = V [X ], and P(|X − E [X ]|2 ≥ c2) = P(|X − E [X ]| ≥ c) so

P(|X − E [X ]| ≥ c) ≤ σ2

c2

With c > 0.
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D e fi n i t i o n

Let Y1,Y2, ... be a sequence of r.v. (not necessarily indep), and let a ∈ R. Yn is said
to converge to a in probability if for every ε > 0 holds that:

l i m
n→∞

P(|Yn − a| ≥ ε) = 0

We can adapt conveniently the previous definition as...
For every ε > 0, and for every δ > 0, there is n0 such that

P(|Yn − a| < ε) ≤ δ, ∀n ≥ n0

ε is the accuracy and δ the confidence level. So with a confidence level δ we can say
that Yn is around a with an accuracy of ε.
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One can think that if a sequence Yn converges in probability to some constant c, then
E [Yn] must also converge to c, however, this need not be the case!
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Consider the discrete sequence of random variables Yn with the following distribution:

P(Yn = y) =


1− 1

n , for y = 0
1
n , for y = n2

0 , elsewhere

For every ε > 0 we have:

l i m
n→∞

P(|Yn| ≥ ε) = l i m
n→∞

1

n = 0

so Yn converges to 0 in probability.
However,

E [Yn] =
n2

n = n

which goes to ∞ as n → ∞.
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T h e o r e m ( W e a k L a w o f L a r g e N u m b e r s )

Let X1,X2, ... be independent and identically distributed (i.i.d) r.v. with mean µ. For
every ε > 0 we have

P(|Mn − µ| ≥ ε) → 0, n → ∞
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W L L N P r o o f

3 minutes?

P r o o f .

Using Chebyshev’s inequality, and remembering that M is the average of the X’s, and
setting c = ε we can write:

P(|Mn − µ| ≥ ε) ≤ var [Mn]

ε2

But the variance of Mn is σ2/n...

P(|Mn − µ| ≥ ε) ≤ var [Mn]

ε2
=

σ2

nε2
which goes to zero as n → ∞.
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From the WLLN we get that Var [Mn] → 0 as n → ∞. However, that is not the case
for Sn. Note that Sn, which was the sum of the X ’s does not necessarily converge.Note:

E [Sn] = E
[ n∑

i=1

Xi

]
=

n∑
i=1

E [Xi ] =
n∑

i=1

Mn = nMn

Which clearly goes to infinity as n → ∞. Furthermore, we cannot say anything about
the distribution of Sn as n → ∞

Let’s define another variable.
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D e fi n i t i o n ( C o n v e r g e n c e i n d i s t r i b u t i o n )

A sequence of random variables X1, X2, ..., converges in distribution to a random
variable X if:

l i m
n→∞

FXn(x) = FX (x)

at all points where FX (x) is continuous. We denote it as Xn
d−→ X .
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T h e o r e m ( C o n t i n u i t y T h e o r e m )

Let Xn be a sequence of random variables with cumulative distribution function Fn(x)
and corresponding to moment generating functions Mn(s) (transform). Let X be a
random variable with cumulative distribution function F (x) and moment generating
function M(s).

If Mn(s) → M(s) for any s in an open interval containing 0, then Fn(x) → F (x) at all
continuity points of F , i.e. Xn

d−→ X.
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D e fi n i t i o n ( T r a n s f o r m )

The transform of the distribution of a random variable X (also referred to as the
moment generating function of X) is a function MX (s) of a free parameter s, defined
by:

MX (s) = E
[
esX

]
Moreover, we have that:

M(s) =
∑

x
esxpX (x)

for a discrete random variable, and

M(s) =
∫ ∞

−∞
esx fX (x)dx

for a continuous r.v.
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A s p e c i a l c a s e

The transform of a Normal Random Variable:
Let X be a normal random variable with mean µ and variance σ2. To compute the
corresponding transform, consider the special case of the standard normal r.v.
Y ∼ N(0, 1). The pdf of the standard normal is

fY (y) = 1√
2π

e
−y2
2

and its transform is:
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A s p e c i a l c a s e

MY (s) =
∫ ∞

∞

1√
2π

e
−y2
2 esydy

=
1√
2π

∫ ∞

∞
e

−y2
2

+sydy

= e
s2
2

1√
2π

∫ ∞

∞
e

−y2
2

+sy− s2
2 dy

= e
s2
2

1√
2π

∫ ∞

∞
e

−(y−s)2
2 dy

= e
s2
2
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F r o m t r a n s f o r m t o m o m e n t s

Recall that
M(s) =

∫ ∞

−∞
esx fX (x)dx

Taking derivatives with respect to s in both sides we get:
d
ds M(s) = d

ds

∫ ∞

−∞
esx fX (x)dx

=

∫ ∞

−∞

d
ds esx fX (x)dx

=

∫ ∞

−∞
xesx fX (x)dx

If s = 0 we have:
d
ds M(s)

∣∣∣∣
s=0

=

∫ ∞

−∞
xfX (x)dx = E [X ]
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F r o m t r a n s f o r m t o m o m e n t s

Generalizing, taking the n-th derivative with respect to s in both sides we get:

dn

dsn M(s) =
∫ ∞

−∞
xnesx fX (x)dx

If s = 0 we have:
dn

dsn M(s)
∣∣∣∣
s=0

=

∫ ∞

−∞
xnfX (x)dx = E [Xn]
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Let Zn = Sn−nµ
σ
√

n

P r o p o s i t i o n

E [Zn] = 0 and var(Zn) = 1.

P r o o f .

E [Zn] =
1

σ
√

n (E [Sn]− nµ) = 1
σ
√

n (nµ− nµ) = 0

var(Zn) =
1

nσ2 var(Sn − nµ) = 1
nσ2 var(Sn) =

1
nσ2 nσ2 = 1
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T h e C e n t r a l L i m i t T h e o r e m

T h e o r e m

Let X1,X2, ... be a sequence of i.i.d. r.v. with common mean µ and variance σ2.
Define:

Zn =
Sn − nµ
σ
√

n
then the cumulative distribution function of Zn converges to the standard normal
cumulative distribution function

Φ(z) = 1√
2π

∫ z

−∞
e−x2/2dx

in the sense that
l i m

n→∞
P(Zn ≤ z) = Φ(z), ∀z
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P r o o f C L M

Let X1, X2... be a sequence of i.i.d. r.v. with mean 0 and variance σ2, and associated
to the transform MX (s). Assume that MX (s) is finite when −d < s < d , for d some
positive number.
Now, let

Zn =
Sn − nµ
σ
√

n
=

Sn
σ
√

n
and let’s rewrite Sn =

∑n
i=1 Xi .
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P r o o f C L M

MZn(s) = E
[
esZn

]
= E

[
e

s
∑n

i=1 Xi
σ
√

n

]
=

n∏
i=1

E
[
e

sXi
σ
√

n

]

=

n∏
i=1

MX

(
s

σ
√

n

)
=

(
MX

(
s

σ
√

n

))n
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P r o o f C L M

Use a Taylor expansion around s = 0 to write

MX (s) = MX (0) +
d
ds MX (0)(s − 0) +

1

2

d2

ds2MX (0)(s − 0)2 + o(s2)

where l i m s→0
o(s2)

s2 = 0

And remember that MX (0) = E [e0] = 1, d
dx MX (s)

∣∣
s=0

= E [X ] = 0, and
1
2

d
dx MX (s)

∣∣
s=0

= E [X2] = σ2

2 .

MZn(s) =
(

MX

(
s

σ
√

n

))n
=

(
1 +

s2
2n + o

(
s2
σ2n

))n
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Noting that the error goes to zero, we have the following limit:

l i m
n→∞

MZn(s) = l i m
n→∞

(
1 +

s2/2
n

)n
= es2/2

Which is exactly the same as the transform of the Normal Distribution.

Using the Continuity Theorem, we get that our Zn’s distribution convergest to the
Normal Distribution.
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D e fi n i t i o n ( A l m o s t s u r e l y c o n v e r g e n c e )

Let X1,X2, ... be a sequence of r.v. (not necessarily independent) associated with the
same probability model. Let c ∈ R. We say that Xn → c almost surely if

P
(
l i m

n→∞
Xn = c

)
= 1
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T h e o r e m ( S t r o n g L a w o f L a r g e N u m b e r s )

Let X1,X2, ... be a sequence of i.i.d. r.v. with mean µ. Then the sequence of sample
means Mn converges to µ, with probability 1, in the sense that:

P
(
l i m

n→∞
Mn = µ

)
= 1
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It is not easy to see the difference between SLLN and WLLN. So first thing, they are
very close. Indeed, almost sure convergence implies convergence in probability, however
the opposite is not true.
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L e m m a ( S e c o n d B o r e l - C a n t e l l i L e m m a )

If
∑∞

i=1 Pr(En) = ∞, with {En}∞n=1 being independent events, then,
Pr(l i m s u p n→∞ En) = 1.

In words, if the sum of the probabilities of an event goes to infinity, then that event
happens infinitely many times, and therefore with a non zero probability.
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Consider the r.v. Xn as P(Xn = 1) = 1
n and P(Xn = 0) = 1− P(Xn = 1) = 1− 1

n .

For any ε ∈ (0, 1), Xn < ε only if Xn = 0, which happens with probability 1− 1
n , and as

n → ∞, then P(Xn < ε) → 1, so Xn → 0 in probability.

Because
∑n

i=1 P(Xn = 1) = ∞, so there are a lot of elements in Ω that make Xn = 1,
and therefore the sequence does not converge almost surely.
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Another way to see the difference... consider a film is just released. The probability
that someone watch it is very high at the beginning but decreases steadily over time.
After 100 000 days, the probability of someone watching the film is almost zero
(convergence in probability), however if you wait enough time, almost surely someone
will see it (no convergence almost surely).
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